Spring 09 PreCal Evaluation

1. Find all solutions of each equation below. Express the solutions in radians. Show your work in detail!
(1) $\sin x+\frac{\sqrt{3}}{2}=0$
(2) $\sqrt{3} \cot x+1=0$
2. Find all solutions to each of the following equations in the interval $[0,2 \pi)$.
(1) $\csc x-2=-4$
(2) $(3 \tan x-\sqrt{3})(\sec x+2)=0$
(3) $2 \sin ^{2} x-5 \sin x=-2$
(4) $2 \sec ^{2} x+3 \sec x=2$
(5) $\sqrt{3} \sec ^{2} x-2 \tan x-2 \sqrt{3}=0$
(6) $2 \cos ^{2} x-\sin x+1=0$
3. Find the exact value of each expression. Using indicated formula.
(1) $\cos \left(-\frac{5 \pi}{12}\right)$ (The sum-difference formula)
(2) $\csc \frac{\pi}{12}$ (The sum-difference angles formula)
(3) $\sec 15^{\circ}$ (The sum-difference angles formula)
(4) $\sin 80^{\circ} \cos 20^{\circ}-\cos 80^{\circ} \sin 20^{\circ} \quad$ (Any formula)
(5) $\tan 195^{\circ}$ (The half-angle formula)
(6) $\sin \left(-75^{\circ}\right)$ (The half-angle formula)
(7) $\csc 195^{\circ} \quad$ (Any formula)
(8) $\cot 75^{\circ}$ (The half-angle formula)
4. Prove that

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
$$

5. Given that $\cos \alpha=-\frac{1}{3}$ with α in quadrant II; and $\sin \beta=-\frac{3}{5}$ with β in quadrant IV, find the exact value of each of the following expressions.
(1) Draw the angles α and β in standard position.
(2) $\sin (\alpha+\beta)$
(3) $\cot (\alpha+\beta)$
(4) $\sec (\alpha-\beta)$
6. Simplify the following expression to a trigonometric function of a single angle and then evaluate.

$$
\frac{\tan 70^{\circ}+\tan 35^{\circ}}{1-\tan 70^{\circ} \tan 35^{\circ}}
$$

7. Assume that $\csc \theta=-4$, and $\cos \theta<0$.
(1) Draw a right triangle for the angle θ.
(2) Find the exact value of $\sin 2 \theta$
(3) Find the exact value of $\cos 2 \theta$
(4) Find the exact value of $\cos 4 \theta$
(5) Find the exact value of $\cot 4 \theta$
\qquad
8. Show that $\cot 2 \theta=\frac{1}{2}(\cot \theta-\tan \theta)$
9. Prove the following identity.

$$
\frac{\cot \theta-\tan \theta}{\cot \theta+\tan \theta}=\cos 2 \theta
$$

10. Given that $\tan \theta=-\frac{2}{3}, \frac{\pi}{2}<\theta<\pi$, find the exact value of each of the following expressions.
(1) $\sin \frac{\theta}{2}$
(2) $\cos \frac{\theta}{2}$
(3) $\cot \frac{\theta}{2}$
11. Find exact value of $\cos 37.5^{\circ} \sin 7.5^{\circ}$
12. Use sum-to-product formulas to rewrite each expression as a product. Simplify where possible.
(1) $\cos 3 x+\cos 6 x$
(2) $\cos \theta-\sin 3 \theta$
13. Rewrite each of the following as a single sine.
(1) $4 \sin x-7 \cos x$
(2) $3 \cos x+5 \sin x$
14. Rewrite each of the following as a single cosine.
(1) $4 \sin x-7 \cos x$
(2) $3 \cos x+2 \sin x$
15. Find all solutions of the following equations in $[0,2 \pi)$.
(1) $\sin x+\sin (3 x)=0$
(2) $\cos x-\sin x=-1$
(3) $4 \sin x+3 \cos x=3$
(round up to the nearest degree)
16. Solve each triangle (Find all missing angles and sides), using the law of sines.
(1) $\beta=70^{\circ}, \quad \gamma=10^{\circ}, \quad b=5$
(2) $a=6, \quad b=8, \quad \alpha=35^{\circ}$
(3) $a=3, \quad b=6, \quad \alpha=45^{\circ}$
17. Find the area of each of the following triangles. Rounded up to the nearest hundredth.
(1) $a=2, c=1, \beta=10^{\circ}$
(2) $a=6, b=4, \gamma=70^{\circ}$
(3) $a=4, b=8, c=6$
(4) $a=2, \alpha=40^{\circ}, \beta=20^{\circ}$
