

Fall 09 PreCal Evaluation

MTY Academy

Fall 09-PreCal

- 1. For each given angle below, draw the angle in standard position, mark the reference angle in your sketch, and find the measure of the reference angle.
 - $(1) -430^{\circ}$
 - $(2) \quad \frac{12\pi}{5}$
- 2. Let (-4, -2) be a point on the terminal side of an angle θ in the standard position.
 - (1) Draw the angle θ in a coordinate system. Indicate the reference angle of θ . Also draw a corresponding right triangle and indicate the lengths of sides on the triangle.
 - (2) Find exact values of the six trigonometric functions of θ . Simplify your answers.
- 3. Suppose that the terminal side of an angle θ in the standard position is in quadrant II and $\tan \theta = -\frac{3}{7}$.
 - (1) Draw the angle θ in a coordinate system. Indicate the reference angle of θ . Also draw a corresponding right triangle and indicate the lengths of sides on the triangle.
 - (2) Find exact values of the six trigonometric functions of θ . Simplify your answers.
- 4. Find each of the following values, using the unit circle, or right triangles in coordinate system. Simplify your answers (no radicals are allowed in the denominator). Do not use a calculator.
 - (1) $\sec \frac{\pi}{6} + 3\csc \frac{\pi}{4}$
 - (2) $\left(\tan\frac{\pi}{3}\right)^2 + \left(\cos\frac{\pi}{6}\right)^2$

(3)
$$\frac{\cos 120^{\circ}}{\cot(-150^{\circ}) - \csc(-240^{\circ})}$$

- 5. Given $f(x) = \frac{4x 5}{x 2}$
 - (1) find the inverse $f^{-1}(x)$ of f(x).
 - (2) find the range of f(x).
 - (3) find the range of $f^{-1}(x)$.

©MTY ACADEMY

- 6. Prove that $\csc(90^\circ \theta) = \sec \theta$, where θ is a acute angle.
- 7. Use the **definition** to determine whether each of the following functions is even, odd, or neither.
 - (1) $f(x) = \frac{x}{x^4 9}$
 - (2) $f(x) = |2 + \sin x|$
 - (3) $f(x) = \sin x \cos x$
- 8. For each of the following functions, find the amplitude and the period. Then sketch one complete cycle of each graph by finding high and low critical points and x-intercepts. Label these five points.

(1)
$$y = 3 + \sin\left(x + \frac{\pi}{6}\right)$$

(2)
$$y = 4 - 5\cos\frac{1}{3}(x+\pi)$$

- 9. Draw the graph of each of the following functions with exactly **ONE** cycle. Label the turning point. Find the period and **ALL** asymptotes.
 - (1) $y = -2 + 5 \tan \frac{1}{2} \left(x + \frac{\pi}{3} \right)$
 - (2) $y = 2 + \cot \frac{1}{2}(x \frac{\pi}{2})$
- 10. Draw the graph of each of the following functions with exactly **ONE** cycle. Find the period and ALL asymptotes. Also find the range.
 - (1) $y = 2 4 \csc \frac{1}{2} \left(x \frac{\pi}{2} \right)$
 - (2) $y = 6 + 3 \csc \frac{1}{2} (x + \frac{\pi}{4})$
- 11. Use a calculator to find the value of y in degree to two decimal places. Draw each angle in standard position.
 - (1) $y = \csc^{-1}(-134)$
 - (2) $y = \sec^{-1}(-345)$
 - (3) $y = \cot^{-1}(-239)$

©MTY ACADEMY

- 12. Find exact value of each of the following expressions by drawing its corresponding angle in standard position.
 - (1) $\tan\left[\csc^{-1}\left(-\frac{7}{3}\right)\right]$

(2)
$$\sec\left[\sin^{-1}\left(-\frac{3}{4}\right)\right]$$

- (3) $\cos\left[\tan^{-1}\left(-\frac{5}{2}\right)\right]$
- 13. Find exact value of each of the following expressions.
 - (1) $\sin^{-1}\left(\sin\frac{4\pi}{3}\right)$

(2)
$$\tan^{-1}\left(\tan\frac{2\pi}{3}\right)$$

(3)
$$\csc^{-1}(\csc(-250^{\circ}))$$

- 14. Prove each of the following identities. Show your work in detail.
 - (1) $\cos x \tan x \csc x = -\cos x \cot x$
 - (2) $\tan x + \cot x = \csc x \sec x$
 - (3) $\tan x(\cos x + \cot x \cos x) = \sin x + \cos x$

(4)
$$\frac{\csc^2 x - 1}{\cos x} = \cot x \csc x$$

(5)
$$\left(\tan x + \frac{1}{\cot x}\right)\left(\cot x + \frac{1}{\tan x}\right) = 4$$

(6)
$$\frac{\sin^3 x - \cos^3 x}{\sin x + \cos x} = \frac{\csc^2 x - \cot x - 2\cos^2 x}{1 - \cot^2 x}$$