Fall 09 PreCal Evaluation

MTY Academy
Fall 09-PreCal

1. For each given angle below, draw the angle in standard position, mark the reference angle in your sketch, and find the measure of the reference angle.
(1) -430°
(2) $\frac{12 \pi}{5}$
2. Let $(-4,-2)$ be a point on the terminal side of an angle θ in the standard position.
(1) Draw the angle θ in a coordinate system. Indicate the reference angle of θ. Also draw a corresponding right triangle and indicate the lengths of sides on the triangle.
(2) Find exact values of the six trigonometric functions of θ. Simplify your answers.
3. Suppose that the terminal side of an angle θ in the standard position is in quadrant II and $\tan \theta=-\frac{3}{7}$.
(1) Draw the angle θ in a coordinate system. Indicate the reference angle of θ. Also draw a corresponding right triangle and indicate the lengths of sides on the triangle.
(2) Find exact values of the six trigonometric functions of θ. Simplify your answers.
4. Find each of the following values, using the unit circle, or right triangles in coordinate system. Simplify your answers (no radicals are allowed in the denominator). Do not use a calculator.
(1) $\sec \frac{\pi}{6}+3 \csc \frac{\pi}{4}$
(2) $\left(\tan \frac{\pi}{3}\right)^{2}+\left(\cos \frac{\pi}{6}\right)^{2}$
(3) $\frac{\cos 120^{\circ}}{\cot \left(-150^{\circ}\right)-\csc \left(-240^{\circ}\right)}$
5. Given $f(x)=\frac{4 x-5}{x-2}$
(1) find the inverse $f^{-1}(x)$ of $f(x)$.
(2) find the range of $f(x)$.
(3) find the range of $f^{-1}(x)$.
6. Prove that $\csc \left(90^{\circ}-\theta\right)=\sec \theta$, where θ is a acute angle.
7. Use the definition to determine whether each of the following functions is even, odd, or neither.
(1) $f(x)=\frac{x}{x^{4}-9}$
(2) $f(x)=|2+\sin x|$
(3) $f(x)=\sin x \cos x$
8. For each of the following functions, find the amplitude and the period. Then sketch one complete cycle of each graph by finding high and low critical points and x-intercepts. Label these five points.
(1) $y=3+\sin \left(x+\frac{\pi}{6}\right)$
(2) $y=4-5 \cos \frac{1}{3}(x+\pi)$
9. Draw the graph of each of the following functions with exactly ONE cycle. Label the turning point. Find the period and ALL asymptotes.
(1) $y=-2+5 \tan \frac{1}{2}\left(x+\frac{\pi}{3}\right)$
(2) $y=2+\cot \frac{1}{2}\left(x-\frac{\pi}{2}\right)$
10. Draw the graph of each of the following functions with exactly ONE cycle. Find the period and ALL asymptotes. Also find the range.
(1) $y=2-4 \csc \frac{1}{2}\left(x-\frac{\pi}{2}\right)$
(2) $y=6+3 \csc \frac{1}{2}\left(x+\frac{\pi}{4}\right)$
11. Use a calculator to find the value of y in degree to two decimal places. Draw each angle in standard position.
(1) $y=\csc ^{-1}(-134)$
(2) $y=\sec ^{-1}(-345)$
(3) $y=\cot ^{-1}(-239)$
12. Find exact value of each of the following expressions by drawing its corresponding angle in standard position.
(1) $\tan \left[\csc ^{-1}\left(-\frac{7}{3}\right)\right]$
(2) $\sec \left[\sin ^{-1}\left(-\frac{3}{4}\right)\right]$
(3) $\cos \left[\tan ^{-1}\left(-\frac{5}{2}\right)\right]$
13. Find exact value of each of the following expressions.
(1) $\sin ^{-1}\left(\sin \frac{4 \pi}{3}\right)$
(2) $\tan ^{-1}\left(\tan \frac{2 \pi}{3}\right)$
(3) $\csc ^{-1}\left(\csc \left(-250^{\circ}\right)\right)$
14. Prove each of the following identities. Show your work in detail.
(1) $\cos x \tan x-\csc x=-\cos x \cot x$
(2) $\tan x+\cot x=\csc x \sec x$
(3) $\tan x(\cos x+\cot x \cos x)=\sin x+\cos x$
(4) $\frac{\csc ^{2} x-1}{\cos x}=\cot x \csc x$
(5) $\left(\tan x+\frac{1}{\cot x}\right)\left(\cot x+\frac{1}{\tan x}\right)=4$
(6) $\frac{\sin ^{3} x-\cos ^{3} x}{\sin x+\cos x}=\frac{\csc ^{2} x-\cot x-2 \cos ^{2} x}{1-\cot ^{2} x}$
