Fall 08 Algebra Evaluation

1. Find each of the following and write your final answers in standard form $a+b i$.
(1) $(13+2 i)-3(5+7 i)-2(5-4 i)$
(2) $(4+2 i)(4-2 i)-(2+7 i)^{2}$
2. Rationalize the denominator for $\frac{2 i}{2-7 i}$ and write your final answers in standard form $a+b i$.
3. Use the discriminant $b^{2}-4 a c$ to determine the number of solutions to $(x-3)(2 x-5)=-4$,
\qquad
4. For each complex number z below, find the length $|z|$ of z.
(1) $z=(2+3 i)(1-5 i)$
(2) $z=\frac{1+4 i}{3-2 i}$
5. Let $z=a+b i$ and $w=c+d i$. Prove that $|z w|=|z||w|$.
6. Assume that $f(x)$ is a linear function. If $f(2)=-8$ and $f(-3)=2$, find $f(x)$.
\qquad
7. Write the quadratic functions $f(x)=2(x-3)^{2}-(2 x-8)$ in general form.
\qquad
8. Write the quadratic function $f(x)=3 x^{2}-5 x+1$ in standard form.
9. Let $f(x)=-(x+3)^{2}+4$.
(1) Find the vertex of the parabola of $f(x)$;
(2) Find the intercepts;
(3) Sketch the parabola of $f(x)$. Label the vertex, all intercepts, and symmetric axis.
(4) Find the minimum or maximum value of the function, if any.
(5) Find the range of $f(x)$.
10. Let $f(x)=x^{2}-2 x+6$.
(1) Find the vertex of the parabola of $f(x)$;
(2) Find the intercepts;
(3) Sketch the parabola of $f(x)$. Label the vertex, all intercepts, and symmetric axis.
11. Let $f(x)=-2(x+3)^{2}-1$.
(1) Find the vertex of the parabola of $f(x)$;
(2) Find the x - and y -intercepts;
(3) Sketch the parabola of $f(x)$ using transformations. Identify the starting function. Describe all transformations in words. Label your graphs in order. Label the vertex.
12. Find the values of a and b so that the graph of $f(x)=a(x-b)^{2}+2$ passes through the point $(-1,4)$ and has the symmetric line $x=-2$. Sketch the graph of $f(x)$.
13. Find the values of a and b so that the graph of $f(x)=a(x-b)^{2}-4$ intersects the x-axis at 1 and 5 . Sketch the graph of $f(x)$.
14. Find a quadratic function $f(x)=a x^{2}+b x+c\left(\right.$ or $\left.f(x)=a(x-h)^{2}+k\right)$ for each parabola described below. Draw the parabola and label all information you have.
(1) min. value of -2 and x-intercepts of -1 and 3
(2) symmetric line is $x=2$ and passes through two points $(4,3)$ and $(3,0)$
15. One number is four less than twice another number. Find the two numbers so that the sum of their squares is as small as possible.
16. A parking lot is to be formed by fencing in a rectangular plot of land except for an entrance 12 m wide along one of the sides. Find the dimensions of the lot of the greatest area if 600 m of fencing is to be used.
17. Use the remainder theorem and the synthetic division to find $P(-3)$ if $P(x)=2 x^{4}-$ $4 x^{2}+6 x-1$.
18. Use the factor theorem and the synthetic division to determine whether $x+1$ is a factor of $P(x)=2 x^{3}-3 x^{2}-8 x-3$.
19. Suppose that -1 is a zero of $P(x)=x^{3}+8 x^{2}+19 x+12$. Find all other zeros.
20. Let Let $P(x)=(x+6)\left(x^{3}-4 x^{2}+x-4\right)$. Find all zeros of $P(x)$.
21. If the polynomial $P(x)=a x^{4}+x^{3}-x^{2}-2 b x$ has the polynomial $x^{2}-x-2$ as a factor, find the values of a and b .
\qquad
22. Solve the equation $2 x^{3}+x^{2}+5 x+12=0$
23. Given $P(x)=2 x^{3}-7 x^{2}-27 x-18$,
(1) list all possible rational zeros;
(2) use synthetic division to test the possible rational zeros and find an actual zero;
(3) use the quotient from part (b) to find the remaining zeros.
\qquad
24. Show that $\sqrt{5}$ is an irrational number, using the Rational Zero Theorem.
25. Find a polynomial with the least degree that has real coefficients with indicated information. Express your answers in the form:

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

(1) $P(2)=3$
(2) zeros: -2 (multiplicity 2) and $3 i$
(3) Sketch the graph by using the intercepts and end behavior. (Don't use a calculator!)

