Fall 06 Algebra Evaluation

1. Given points $A=\left(-\frac{1}{4},-3\right)$ and $B=(-3,2)$, do each of the following problems. Simplify your answers, if possible.
(1) Find the distance between A and B.
(2) Find the midpoint of the line segment joining A and B.
(3) Find the slope of line passing through A and B.
2. For each pair of points below, determine whether a line passing through given points is horizontal, or vertical, or neither, using the slope formula. Box your answers.
(1) $(2,-4)$ and $(-3,7)$
(2) $(-3,9)$ and $(-3,-1)$
(3) $(-2,-3)$ and $(-2,5)$
3. Given three points $A=(1,7), B=(-3,-2), C=(5,16)$, determine whether they are collinear. Show your work in detail.
4. Find the value of a if the line passing through $(1,-3)$ and $(a, 6)$ has the slope $-\frac{2}{3}$.
5. Find the value of k so that the line passing through $(3,4 k)$ and $(k, 5)$ has the slope -3 .
6. Determine whether each pair of the following lines are parallel, perpendicular, or neither, using the slope.

$$
\begin{array}{ll}
L_{1}: & A=(2,3), \tag{1}\\
L_{2}: & C=(-2,3),
\end{array} \quad D=(-2,8)=(-7,-1)
$$

(2) $\quad L_{1}: \quad A=(-2,1), \quad B=(-4,5)$

$$
L_{2}: \quad C=(-4,-5), \quad D=(8,-1)
$$

$$
\begin{array}{ll}
L_{1}: & A=(2,3), \tag{3}\\
L_{2}: & C=(1,-2), \quad D=(-2,8) \\
\end{array}
$$

7. Let L_{1} be a line passing through $A=(-2,4)$ and $B=(3,-4)$. Let L_{2} be a line passing through $C=(2,-8)$ and $B=(a, 4)$. Find the value of a if the two lines are parallel.
8. Let L_{1} be a line passing through $A=(-2,4)$ and $B=(3,-4)$. Let L_{2} be a line passing through $C=(2,-8)$ and $B=(a, 4)$. Find the value of a if the two lines are perpendicular.
9. Let L_{1} be a line passing through $A=(4,-7)$ and $B=(-2,3)$. Let L_{2} be a line passing through $C=(a,-3)$ and $D=(5,1)$.
(1) Find the slope of line L_{1}.
(2) Find the value of a if L_{1} and L_{2} are parallel.
(3) Draw the lines and label two points on each line.
10. For each of the following equations, find x - and y-intercepts, if any. Then draw a line and label intercept(s).
(1) $3 x+5 y=15$
(2) $\frac{2}{5} x-\frac{3}{2} y=-2$
(3) $4 y=3$
11. Given $2 x+y=2$,
(1) find the $x-$ and y - intercepts.
(2) draw the line and indicate the intercepts on your line.
(3) Find the slope of the line.
(4) Let L be the line passing $(-2+a, 8)$ and $(3 a, 10)$. If L is parallel to the line with equation $2 x+y=6$, what is the value of a ?
12. Line L passes through point $(-1,2)$ and has the slope $-\frac{2}{3}$.
(1) Use the the point and the slope to find a new point.
(2) Draw line L by connecting two points and label them on line.
13. Given $y+3=-\frac{1}{2}(x-2)$,
(1) find the x and y -intercepts.
(2) find the slope of the line.
(3) write the equation in standard form $A x+B y=C$, where A, B and C are integers.
14. Find an equation in point-slope form

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

if the line has the indicated information below. Also DRAW the line and LABEL two points on your line.
(1) slope of -4 and a point $(2,-3)$
(2) two points $(2,-3)$ and $(-4,1)$
(3) slope of $\frac{2}{3}$ and cross the x -axis at -3
15. Let L be a line that has the slope $-\frac{2}{5}$ and passes through point $(-2,5)$.
(1) Find the equation in slope-intercept form $y=m x+b$ for L.
(2) Draw the line L and label two points.
16. Let L be a line that passes through two points $(-1,3)$ and $(2,-9)$.
(1) Find the equation in slope-intercept form $y=m x+b$ for L.
(2) Rewrite the equation in standard form.
(3) Find the intercepts.
17. Line L has the equation $2 x+4 y=5$.
(1) Find the slope and the y-intercept.
(2) Let K be the line passing through a point $(-1,3)$ and parallel to line L. Draw line K and label two points.
(3) Find the equation of line K in standard form.
18. Let L_{1} be a line perpendicular to line L_{2} that has the equation $3 x+6 y=7$. If L_{1} has the x-intercept of $(-3,0)$, find the equation of line L_{1} in standard form.
19. Find the equation in slope-intercept form of line L that passes through a point $(-5,-7)$ and parallel to the line with equation $2 x-3 y=8$.
20. Find the equation in standard form of line L that passes through a point $\left(-2,-\frac{2}{3}\right)$ and perpendicular to the line with equation $y=-\frac{4}{7} x+9$.
21. Determine whether the system is independent, inconsistent, or dependent, by using slopes of lines.

$$
\begin{aligned}
& 2 x+5 y=4 \\
& 6 x-9 y=12
\end{aligned}
$$

22. Solve each of the following systems of equations, using the substitution method.
(1) $\begin{aligned} 4 x-y & =7 \\ 3 x+2 y & =19\end{aligned}$
(2) $\begin{aligned} 2 x-5 y & =-2 \\ 3 x+7 y & =1\end{aligned}$
23. Solve each of the following systems of equations, using the elimination method.
(1) $2 x+2 y=7$
$5 x-4 y=4$
(2) $\begin{aligned} 2 x-5 y & =-2 \\ 3 x+7 y & =1\end{aligned}$
\qquad
24. Given

$$
\begin{aligned}
-4 x+6 y & =3 \\
x-9 y & =
\end{aligned}
$$

find the average value of x and y.
25. David has some quarters and nickels. There are 74 coins in all and the total value of the coins is $\$ 9.30$.
(1) Write a system of equations to represent the situation.
(2) How many coins of each type does David have?

